Active Brownian particles with energy depots modeling animal mobility.
نویسندگان
چکیده
In the model of active motion studied here, Brownian particles have the ability to take up energy from the environment to store it in an internal depot and to convert internal energy into kinetic energy. Considering also internal dissipation, we derive a simplified model of active biological motion. For the take-up of energy two different examples are discussed: (i) a spatially homogeneous supply of energy, and (ii) the supply of energy at spatially localized sources (food centers). The motion of the particles is described by a Langevin equation which includes an acceleration term resulting from the conversion of energy. Dependent on the energy sources, we found different forms of periodic motion (limit cycles), i.e. periodic motion between 'nest' and 'food'. An analytic approximation allows the description of the stationary motion and the calculation of critical parameters for the take-up of energy. Finally, we derive an analytic expression for the efficiency ratio of energy conversion, which considers the take-up of energy, compared to (internal and external) dissipation.
منابع مشابه
Large scale Brownian dynamics of confined suspensions of rigid particles.
We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently g...
متن کاملModeling and Direct Simulation of Velocity Fluctuations and Particle-Velocity Correlations in Sedimentation
In this paper we present direct numerical simulations of monodisperse and polydisperse suspensions of non-Brownian particles sedimenting at low Reynolds number. We describe a scheme to generate ergodic ensembles of random particulate systems and a numerical procedure for computing interactions among spherical particles based on Ewald summation technique for hydrodynamic mobility tensors. From t...
متن کاملKinetics analysis of electrophoretic deposition using small signal and large signal modeling, Case study: Nano-Mullite suspension
Having sufficient and accurate understanding about kinetics of phenomena, could be an important reason for further technological progresses. Finding a white-box mathematical model for weight vs. time curves of Electrophoretic Deposition (EPD) using large and small signal analysis has been studied thoroughly in the present investigation. Weight-Time curves of nano-Mullite suspension have been tr...
متن کاملActive Motion in Systems with Energy Supply
Biological motion, human traffic and many other types of active motion rely on the supply of energy. In order to derive a rather general approach for active motion, we have proposed a model of active Brownian particles, which have the ability to take up energy from their environment, to store it in an internal energy depot and to convert internal energy to perform different activities, such as ...
متن کاملActive Brownian Particle and Random Walk Theories of the Motions of Zooplankton: Application to Experiments with Swarms of Daphnia
Active Brownian Particles are self-propelled particles that move in a dissipative medium subject to random forces, or “noise”. Additionally, they can be confined by an external field and/or they can interact with one another. The external field may actually be an attractive marker, for example a light field (as in the experiment) or an energy potential or a chemical gradient (as in the theory)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bio Systems
دوره 49 1 شماره
صفحات -
تاریخ انتشار 1999